
AN EXECUTION MODEL FOR LOTOS SPECIFICATIONS

Cheng WU and Gregor v. BOCHMANN

Dept. I.R.O., Universite de Montreal, Quebec, Canada

Abstract:

The paper describes a model for executing LOTOS
specifications (temporal control part). The execution model is
based on an activity tree with attributes. The activity tree
reflects the dynamic relations between the process invocations
and activations of behavior expressions in the specified
system, while functions related to the attributes control the
execution of interactions and the growing and updating of the
tree. The problem of infinite branching, which is caused by
non-well guarded specifications or specifications containing
generalized choices, is discussed based on the strategies for
growing the activity tree.

1. Introduction

LOTOS [LOTOS 87, Bolo 871 is an FDT which is
standardized within I S 0 for formally specifying
communication protocols and services of Open System
Interworking (OSI). It is also applicable to distributed systems.
LOTOS consists of two parts: Abstract Data Types and the
Temporal Control part (related to CCS [Miln 801). This paper
concems implementation issues of the latter part.

LOTOS is designed as an executable specification language.
Execution of a specification plays an important role in
development process of communication software [Turn 891.
Some interpreters (or simulators) have been or is being
developed based on high level programming languages [Bria
861 [Logr 881 [Mana 891 [Gilb 891. They allow users to
simulate the execution of a LOTOS specification and check
whether it behaves correctly. Some work also has been done
on translating LOTOS to state machines and restricted form of
LOTOS to efficiently execute LOTOS specifications [Karj 881
[Dubu 891 [Boga 891 [Quem 893. But there are still several
questions which need further attention, such as distributed
implementation and infinite branching. Concerning these
questions, there are certain difficulties for LOTOS
specifications which contain 'non-well-guarded' recursion,
generalized choices, or dynamic rendezvous matching. A
specification containing 'non-well-guarded' recursion or
generalized choices may cause an implementation into an
infinite loop, and the dynamic rendezvous matching of LOTOS
makes the distributed implementation a challenge.

In LOTOS, distributed systems are described in terms of
processes. A system as a whole is a single process, in the
following called 'system process', which may consist of
several interacting sub-processes. These sub-processes may in
turn be refined into sub-sub-processes etc., so that a
specification of a system in LOTOS is essentially a hierarchy
of process definition. In LOTOS, the realtion between two
processes is defined by operators I;' '>>I, '[]I, Ill', 'Ill', or

'[>I, which represent sequential, enabling, alternative choice,
dependent parallelism, independent parallelism and disabling
respectivelylJ0TOS 871.

In a LOTOS specification, a process is said to be active if it is
the system process or it is called by its super-process which is
active. For the specification P:=Pl * P2 (where * is one of
operators [I, II, 111 and [>), for example, if P is active, the sub-
processes P1 and P2 are also active. However, for P:= g;P1 or
P:= P2>>P1, P1 is not active when P is active, since it has to
wait for the interaction at gate 'g' or the successful termination
of P2. According to the LOTOS semantics, all active processes
must be considered at each given time for possible execution of
interactions.

There are two cases in which a LOTOS specification will result
in an infinite number of active processes. One is a specification
which contains 'non-well-guarded' recursion, for example in
the case of a specification of the form P[a](x:int):=a!x; stop *
P[a](x+l) (where * is one of the operators [I, II, 111 or [> etc).
Another case is a specification which contains a generalized
choice, such as P:=choice xl:tl, ..., xn:tn [I B(x1, ..., xn)
where one of the types ti (i=l, ..., n) defines an infinite set of
possible values. A specification with one of the two cases
above defines a behavior allowing for ari infinite number of
active processes, and when executed, the implementation or
interpreter may create infinitely many process instances, which
practically means that the system loops or uses up all system
resources.

LOTOS uses multi-way rendezvous for communication among
processes, which is useful for system specification [Char 871.
However, multi-way rendezvous is more complex than the
two-way rendezvous used in many other languages. In the case
of LOTOS, it is difficult to tell in gemeral, by static analysis,
how many processes, and which processes take part in a
LOTOS rendezvous. As an example, we consider the
following specification:
P:= hide a, b in
Pl[a,b] II P2[a,b]
where
P2[a,b]:= hide c in
(a; stop) [I ((a; stop [I c; stop) II P4[a,b,cl)

For an interaction at gate 'a', there are two choices within P2:
(1) P1 may rendezvous with a; stop.
(2) P1 may rendezvous with (a; stop [I c; stop) II P4.
In case (11, there are two processes involved in the
rendezvous, while in case (2), there are at least three
processes, or more, if P4 contains several subprocesses
participating in the interaction.

...

In order to provide a framework for discussing problems of
distributed implementation and infinite branching, an execution
model is suggested in this paper . The execution model is

1890

904.3.1
CH2827-4/90/0000-1890 $1 .OO 0 1990 IEEE

based on an activity tree with attibutes. The activity tree
reflects the dynamic relation between the process invocations
and activations of behavior expressions in the specified
system, while the functions related to the attibutes control the
execution of interactions and the growing and updating of the
activity tree. In this paper, we only discuss the problem of
infinite branching by presenting different growing strategies
based on the execution model. The growing strategies have
different properties concerning the handling of non-well-
guarded specifications. In [Boch 89?] there is a detailed
discussion of the problem of distributed implementation also
using this execution model.

In Section 2, we will present the execution model. In Section
3, we will discuss the problem of infinite branching based on
different growing strategies. Section 4, finally, contains the
conclusions.

2. Execution Model

The execution model is based on an activity tree with attributes.
In Section 2.1, we present the activity tree and its growing and
updating rules. In Section 2.2, we define the evaluation rules
for attributes. In Section 2.3, we present the three phases for
the execution of interactions of the execution model. Finally, in
Section 2.4, we discuss several aspects of the execution model
which are particularly interesting.

Figure 1 shows a LOTOS specification of the 'Example'
system, which will be used as an example in rest of this paper.
After dropping money into a VM (vending machine), a boy
may obtain a candy, if the latter is not be consumed by one of
the two little devils that are included in the VM. In Figure 1,
'm' denotes 'money', 'c' denotes 'candy', and 'e' denotes
'eat-candy '.

Specification Example: =
hide m. c in
Boy[m. c] II VM[m, c]
where
process Boy[m, c]:noexit:=

m; (c; Boy[m. cl
[I
Boy[m, cl)

endproc
process VM[m. c]:noexit:=
hide e i n
Machme[m. c, e]
I [el I
(Devil[e] Ill Devil[e])
where
process Machine[m. c. e]:noexit:=
m; (c; Machine[m. c, e]

11
e; Machme[m, c. e])

endproc
process Devii[e] : noexi t : =
e; Devil[e]

endproc
endproc

endspec

Figure 1: Example system - Boy and VM

2.1: Activity tree

Trees have been used to present LOTOS specifications. For
example, a so-called action tree in [LOTOS 871 (also called
behavior tree in [Logr 881) is used to show all possible action
sequences defined by a LOTOS specification. A syntax tree can
also be used to show the structure of a LOTOS specification

and the relations among its actions. Below is the context-free
grammar of a simplified syntax for the temporal control part of
LOTOS, which is the basis on which we will define our
activity tree. In the next section, we will define 'attributes' to
deal with interaction offers involving parameters.

In the following, 'B' is a non terminal (and also the starting)
symbol of the grammar, and ([I, (I , [>, ;, >>, stop, exit, i, g l ,
..., gn) is the set of terminal symbols. Each ge (i. g l , ..., gn)
denotes a gate in the system, each rE ([I, II, [>, ;, >>) denotes
a LOTOS operator, and 'stop' and 'exit' denote the STOP and
EXIT processes respectively.
(1) B+ t for each tE [stop, exit)
(2) €3 -+ g;B
(3) B + B >>B

(5) B 4 B I1 B
(6)B + B [>B

for each gate gE (i, g l , g2, ..., gn)

(4) €3 4 €3 11 B

In contrast to the syntax tree of a LOTOS specifiction which
represents the static structure of the text of the specification, the
activity tree represents a dynamic changing system state during
the execution of the specification. Nevertheless, it has certain
similarities with the syntax tree in so far as the production rules
of the activity tree correspond to the above syntax rules. The
major difference is that the activity tree is normally not
completely expanded. It is grown in a top-down fashion, as
explained below, starting with the root node which represents
the system specification.

The activity tree reflects the possible activities and the dynamic
relationships between the active behavior expressions during
the execution of the specified system. An activity tree consists
of leaf nodes and internal nodes. An internal node represents
the relation between its descendent nodes, i.e. one of the
LOTOS operators [I, I I , 111, and [> etc., or contains the
description of the behavior to be activated after the successful
termination of its descendants, i.e. >>B (where B is a behavior
expression). There are two kinds of leaf nodes: terminal and
non-terminal. A terminal node corresponds to a behavior
expression 'g;B', where 'g' is called an active gate and 'B' is
the behavior expression which will be activated after a
rendezvous happens at 'g'. A non-terminal node cannot
directly participate in an interaction, it must first be expanded.
A non-terminal node corresponds to a behavior expression
'Bl#B2', where # is one of the operators 11, 111, [I, [> and >>,
and 'BI' and 'B2' are behavior expressions. During the
growing phase, a non-terminal node may be expanded and may
thus lead to new terminal nodes that may participate in
interactions. Figure 2(a) shows the activity tree of the Example
system before any money is dropped in. Figure 2(b) shows the
tree after the expansion of the node N12 representing the
vending machine (VM). Note that in the node N121, the
invocation of the 'Machine[m, c, e]' process is replaced by its
definition, as given in Figure 1.

terminal (lean node non-terminal (l e 4 node

904.3.2
1891

(b) growing node
N12 of (a) Nl(system)

AJN122)=(}

A&Nl21)= ()

(c) updating after
rendezvous happens
at gate 'm'

Notation: 0 node cannot be expanded (internal or terminal leaf node)

0
(7

node can be expanded (non-terminal leaf node)

internal node which can be replaced by its son

Figure 2: Different stages of the activity tree
for the system of Figure 1.

When executing a LOTOS specification, the system behavior
changes dynamically. So does the activity tree. The activity tree
can be grown and updated. By growing, we mean that the
system expands non-terminal nodes in order to find terminal
nodes with possible interactions. By updating, we mean that,
after a rendezvous, the system prunes those sub-trees of the
activity tree which represent alternative behavior not possible
any more and let some behaviors (next behaviors) be active.
Figure 3 shows the rules for growing. A non-terminal (leaf)
node 'Bl*B2' (* is one of [I, II, 111, and [>) can be expanded to
become an internal node '*' and with two son (terminal or non-
terminal nodes) 'Bl' and 'B2', as shown in Figure 3(a).
Figure 3(b) shows a non-terminal node 'Bl>>B2' can be
expanded to become an internal node '<<B2' with a son
(terminal or non-terminal) node 'B 1'. We note that there is no
growing rule corresponding to the syntax rule of process
invocation. If the LOTOS behavior expression of a non-
terminal node contains a process invocation, this invocation
will be replaced by the behavior of the corresponding process
definition with a substitution of its parameters, as defined by
the LOTOS semantics. The so obtained behavior is then the
basis for further expansion of the node.

Figure 4 shows two of the rules of updating. After
participation a rendezvous at gate 'g', a terminal node 'g;B'
become (terminal or non-terminal) node 'B', as shown in
Figure 4(a). Figure 4(b) shows a tree with root node '[I' and
two sub-trees 'Bl' and 'B2'. When a rendezvous happens in
'B2', 'Bl' is pruned and 'B2' is updated to "B2"'. That is, the
original tree become one with empty root node (which can be
replaced by its son) and a sub-tree "B2"'. The full updating
rules are given in [Wu 891 by comparing them with LOTOS
semantics as defined by the transition system given in [LOTOS

871. The growing and updating of the activity tree will be
discussed in more detail in Section 2.3.

-b& growing

growing

(a) updating after a rendezvous
happens at 'g'.

(b) updating after a rendezvous
happens in BZ

0 terminal or non-terminal node A subtree

Figure 4: Two updating rules

2.2.Attributes

Attributes are defined in the activity tree. Their functions are to
determine which nodes participate in a rendezvous on a given
gate. Similar as in the case of attribute grammars [Boch 76~1,
the attributes are associated with the nodes of the tree. In
contrast to attribute grammars, however, where the values of
the atmbutes are evaluated once and for all for each given
syntax tree, the values of the atmbutes associated with a node
in the activity tree may change over time, as the structure of the
activity tree changes.

Without restriction of generality, we may assume that each
node 'B' of an activity tree corresponds to a specification with
the general structure 'P[Sl]:= hide S2 in < expression>, where
S1 and S2 are the gate lists. Here all free gates of
<expression> must either be in S1 or S2. In most cases S2 will
be empty, for instance, a node representing the behavior
'g1;Bl [I g2;B2' will be written as 'P[gl, 821 := hide in g1;Gl
[I g2;B2'. An attribute Ag is defined in node 'B' for each
ge S luS2. An attribute Ag is also called a 'hide attribute'
(denoted as Ahg) if ge S2. The value of attribute Ag is a set of
interaction offers concerning the gate 'g'.

1892

~

The attributes of the activity tree are 'synthesized', that is, they
are evaluated by applying the evaluation rules from the bottom
of the tree towards the top. The precise definition of these
evaluation rules is given in the following table. In the table,
'Ag(B)' denotes the attributes of gate 'g' in node 'B', og'
denotes the interaction offer of gate 'g', 'S ' denotes a gate list,
and 'B+ Bl#B2' denotes an internal node 'B' which has two
son nodes, the left son 'Bl' and the right son 'B2, where ' #
is one of operators [I, II, [>, and >>. In the table, there are two
functions matched and derived. Their formal definitions are
given in [Wu 891. Matched(ol,o2) is true if the two offers
'01' and '02' are compatible for a rendezvous, and derived
(01,02) is a single offer including the constraints imposed by
'01' and '02'. For instance, matched('g?x:int!3?z:int',
'g?x:int?y:int!S) = true and derived('g?x:int!3?z:int',
'g?x:int?y:int!S) = 'g?x:int!3!5'.

Attribute evaluation rule
For leaf nodes:
Ag(g;B) =(og 1

=@
For internal nodes:
Ag(B) = Ag(B 1)
Ag(B) = Ag(Bl)uAg(B2)
Ag(B) = Ag(Bl)uAg(B2)
Ag(B) =(otg lo'g=derived(01~,02~),

if B is non-terminal node

ifB+ Bl>>B2
ifB+ B1 [I B2
if B+ B1 IS1 B2 and ge S

olgE Ag(Bl), O ~ ~ E Ag(B2) and matched(olg, 02~)=true)
if B+ B1 IS1 B2 and ge S
ifB+ B1 [>B2 Ag(B) = Ag(B l)~Ag(B2)

(Note: Ag(B) =+ if gate 'g' is not defined in node 'B')

It is clear that a rendezvous is possible at gate 'g' if the attribute
Ah at the node where 'g' is hidden contains an offer '0 '. All
n d e s that participate in the derivation of '081 will invofve in
the rendezvous. For example in Figure 2(b), a rendezvous can
only happen at gate 'm' because Ah,(Nl)=(m), Ahc(N1)=(),
and Ahe(N12)=(). Nodes N11 and node N121 will be
involved in the rendezvous.

2.3 Three phases for the execution of interactions

The activity tree changes dynamically during the execution of
LOTOS specifications through the repetition of the following
three phases: growing, matching and updating. In the growing
phase, the system expands non-terminal nodes until all or some
terminal nodes with possible interactions are reached. After
that, the system goes into the matching phase, by evaluating
attributes, to find possible rendezvous usually involving
several terminal nodes of the tree. If a possible rendezvous is
found and executed, the matching phase is followed by the
updating phase during which the system updates the tree,
according to the rules discussed in Section 2.1 to reflect the
state change implied by the rendezvous. If the matching phase
does not lead to any rendezvous, the growing phase is
resumed.

An example of growing is given by Figure 2(b) which shows
the activity tree obtained by expanding the non-terminal node
N12 of the Example tree of Figure 2(a). Figure 2(b) also
shows the values of attributes in each node of the tree, which
are obtained in the matching phase. An example of updating is
given by Figure 2(c) which shows the Example tree of Figure

2(b) after a rendezvous at gate 'm' in which the terminal nodes
N11 and N121 participated.

2.4. Interesting aspects of the model

The execution model describe above can support parallel
processing and selective, possibly time-dependent, creation
processes (activities). It provides also a framework for
discussing the problems of distributed implementation and
infinite branching.

The three phases of growing, matching and updating in
different parts of the activity tree could be processed largely in
parallel. For example, when a rendezvous happens in one sub-
tree, the system may update the sub-tree while the other sub-
trees may continue the 'growing ' or 'matching' activities. This
feature allows us to discuss the problem of distributed
implementation of LOTOS specifications based on the
execution model. By distributed implementation, we mean an
implementation of a system specified in LOTOS involving a
given number of sites, communicating with one another by the
exchange of messages through an underlying reliable
communication medium. At present, some work has been done
about the implementation of multi-way rendezvous in
distributed environment [Gao 891 and distributed
implementation of LOTOS [Boch 89?]. In [Boch 89?], the
different sub-trees of the activity tree reside on different
physical sites and do 'growing' and 'updating' independently,
and the procedure of evaluation of attributes is replaced by a
so-called virtual ring algorithm [Gao 891 which deals with the
implementation of distributed rendezvous interactions.

As discussed in Section 1, all active processes are considered
as candidates for participating in interactions at the same time
(time independence) in LOTOS semantics. However, in the
execution model, we could specialize the LOTOS semantics by
considering only selective creation of active processes, and
possibly time dependent activation by designing different
growing strategies for the activity tree (see Section 3).

\
\

Figure 5: The activity tree of P:=choice x:t [I B(x)

\
\

Figure 6:
The activity tree of
P[a](x:int):=(a!x;stop) * P[a](x+l),
where * is one of the opertors [I, II,111 or [> etc.

904.3.4
1893

The two cases of infinite branching mentioned in Section 1 can
be modeled by the activity tree as follow: in the case of a
specification of the form P:=choice x: t [I B(x) where 't' is an
infinite (enumeratable) set, we consider an activity tree of the
form shown in Figure 5, which results in a finite number of
nodes for any finite depth of the activity tree. For the case of a
specification of the form P[a](x:,int):= a!x;stop * P[a](x+l)
(where * is one of the operators [I, II or [>), we obtain an
activity tree of the form shown in Figure 6. In Section 3, we
will discuss the infinite branching problem in the context of
different growing strategies for the activity tree.

Time dependent process creation can be used as a basis for
defining the semantics of performance parameters, such as
proposed in [Boch 88bl. For example, the behavior expression
'a; suite-a[x,y] [I b; wait 50; suite-b[x,y]' defines a process
which may participate in actions 'a' or ' b (depen'ding on its
environment). A delay is introduced if action b is executed,
such that suite-b can only start 50 time units later. This can be
modelled by delaying the creation of the process representing
suite-b by 50 units.

3. Growing Strategies

We discuss in this section several strategies for the growing
phase of the LOTOS execution model. Some of these strategies
are only suitable for the restricted class of well-guarded
specifications. We are also interested to know whether the
execution model interprets the LOTOS specifications correctly.
For this purpose we give in the first subsection some
definitions concerning desirable properties of LOTOS
interpreters.

3.1. Desirable properties of interpreters

Let S be any LOTOS specification and M[S] be an execution
model (interpretation) of S. Let a denote a state of MIS], and
dint denote the initial state. Let G be a set of observable
actions, g l , g2, ... ranging over G, i be an invisible action. Let
6 range over G u (i) , and a denote a string 6162...~3~ of
actions.

A transition relation - 6 -> is defined as: Q - 6 -> a' iff after an
action 6 happened in Q, the system state changes to a'. An
extension transition relation = a => is defined as : a=a=> 0'
iff there exist ai, 0 I i I n, such that <T=ao-8i->~i...~n-i-6n-
>Bn=O'.

Let a - 6 -> denote that there exists a a' with a - 6 -> a';
o=a=> is defined analogously. Let a - 6 ->* and a=a=>* be
the negations of <T - 6 -> and o=a=> respectively.

Let Tr(M[S]) =(OllOint=C1=>) denote the set of possible
traces of MIS].

Defjnition of soundness:
Let M1 and M2 be execution models. M1 is said sound based
on M2 iff VS (Tr(M2[S]) a Tr(Ml[S])). M1 is sound if M1 is
sound based on the ideal execution model as defined by the
LOTOS semantics.

Definition of completeness:

Let Mi and M2 be execution models. Mi is said complete
based on M2 iff VSVaVg(3~l'(~lint=~=>Q1'-g->*)~
~~2(~2i,t=ol=>~2'-g->*)). MI is complete if Mi is complete
based on the ideal execution model as defined by the LOTOS
semantics.

It is noted that the soundness of the execution model described
in this paper is based on the characteristics described in Section
2. In this respect, we note the similarity of the LOTOS
semantics with the updating rules for the activity tree (see Wu
891) and the rules for rendezvous matching described in
Section 2.2. This similarity suggest that our execution model is
sound. In the next sections, we will only discuss the
completeness of the execution model in the case of different
growing strategies.

3.2. Interactive interpretation

A typical LOTOS Interpreter is described in [Bria 86, Logr
881. When executing a LOTOS specification, the interpreter
creates, during the growing phase, all possible nodes and, in
the corresponding matching phase, makes a list of all possible
rendezvous. An interactive user must select one of these
interaction for execution. Then, the system prunes the nodes
which are out of date and does the growing and matching
again. In this case, the non-determinism of a LOTOS
specification is implemented by the user choosing one of the
possible interaction.

The LOTOS interpreters can execute all well-guarded LOTOS
specification as long as enough memory space is available for
all active nodes. However, the interpreter can not handle all
non-well-guarded LOTOS specifications because the growing
step may loop indefinitely. To deal with such cases, an
interpretation parameter N may be introduced which limits the
number of nodes in a system. However, this may lead to
blocking in cases where a possible rendezvous could have been
found if a larger value had been chosen for N; this means, the
interpretation algorithm is not complete.

An interactive LOTOS interpreter can be transformed into an
automatic interpreter by making an automatic random choice
among the possible rendezvous at each step of the
interpretation process(see for instance mechanism MO in @Ion
881).

3.3. Breadth first and random growing

M1, another interpretation mechanism presented in [Hori 881,
controls the growing by 'random choice'. It improves the
interpreters described above by reducing the space, but it can
not model a non-well-guarded specification such as
P[a](x:int):= a!x 111 P[a](x+l), because the growing phase will
loop. As a matter as fact, in [Hori 881, both MO and M1 are
presented for executing only well-guarded specifications.

We present here a simple random growth strategy which can
handle infinite branching caused by non-well-guarded
expressions or general CHOICE statements. The strategy is as
follows: in each growing phase, a subset of all the non-
terminal leaf nodes of the activity tree is selected randomly. All
these selected nodes will be expanded. The non-terminal
descendent nodes resulting in that expansion are not further
expanded.

Together with this growing strategy, the LOTOS execution
model described here is complete, that is, it will find a possible
rendezvous if there is one according to the LOTOS semantics.

1894
904.3.5

If there is no possible rendezvous in the interpreted
specification, there is either a detected deadlock, that is, all leaf
nodes of the activity tree are terminal (non expandable) and no
rendezvous is possible, or the activity tree always allows for
further expansion, which implies that the specification contains
some non-well-guarded recursions. In the latter case, the
interpretation process loops.

Because of the random selection process, the completeness
property mentioned above only holds statistically, however,
with probability one, which means it is satisfied for all practical
purposes. In the case that &l non-terminal nodes are expanded
in one growing phase, the growing strategy becomes breadth-
first and the interpretation is deterministically complete. A more
detailed discussion of these issues is given in [Wu 901, where
additional growing strategies are presented with considerations
of both completeness and faimess.

4. Conclusions

We have described an execution model for simulated execution
of LOTOS specifications which supports the selective creation
(possibly time dependent) of LOTOS processes, and parallel
processing. It also provides a framework for discussion
various execution strategies. In this context, strategies which
can handle non-well-guarded specifications are discussed with
considerations of completeness.

The general execution model described here can also be used as
a basis for designing LOTOS implementation strategies for
distributed environments or for systems with parallel
processors. In this context, it is important to limit the growing
of the activity tree in order to reduce the number of messages to
be transmitted between different sites. This is still an area for
further study.

Acknowledgements:

The authors would like to thank Qiang Gao for helpful
discussions. This work was partly supported by the Natural
Sciences and Engineering Research Council of Canada, and the
Ministry of Education of Quebec.

References

[Boch 76c]

[Boch 88b]

[Boch 89?]

[Boga 891

[Bolo 871

Gregor v. Bochmann, "Semantic evaluation
from left to right", Comm, ACM19, pp. 55-62,
1976.
Gregor v. Bochmann and Jean Vaucher,
"Adding performance aspects to specification
languages", IFIP Symposium on Protocol
Specification, Testing and Verification, Atlantic
City, June 1988.
Gregor v. Bochmann, Qiang Gao, and Cheng
Wu, "On the Distributed Implementation of
LOTOS", submitted to FORTE89, 1989.
Kees Bogarads, " LOTOS supported system
development ", in K.J. Turner (editor) "Formal
Description Techniques", Elsevier Science
Publishers B. V. (North-Holland), 1989.
T. Bolognesi and E. Brinksma, "Introduction to
the I S 0 Specification Language LOTOS",
Computer Network and ISDN Systems, vol. 14,
no. 1, pp. 3 - , 1987.

[Bria 861

[Char 871

[Dubu 891

[Eijk 891

[Gao 891

[Gilb 891

[Hoar 781

[Hori 881

[Karj 881

881

[LOTOS 871

[Mana 871

[Mana 891

[Miln 801

[Obai 881

[Quem 891

[Turn 891

[Wu 891

[Wu 901

J.P. Briand, M.C. Fehri, L. Logrippo, A.
Obaid, "Executing LOTOS Specifications", in
Protocol Specification, testing and verification,
B. Sarikaya and G. v. Bochmann (eds), North
Holland, 1986.
A. Charlesworth, "The Multi-way Rendezvous",
ACM Tran. on Programming Languages and
Systems, Vol. 9, No. 2, July 1987, pp. 350-
366
Eric Dubuis, " An algorithm for translating
LOTOS behavior expressions into automata and
ports ", FORTE'89, Vancouver, Dec 5-8 1989.
P.H.J. van Eijk, et al., "The formal description
technique LOTOS", North Horlland Publ.,
1989.
Qiang Gao, G.v. Bochmann, " A Virtual Ring
Algorithm for the Distributed Implementation of
Multi-Rendezvous," Technical Report #675,
University of Montreal, Dept. I.R.O.
D. R. Gilbert, " A LOTOS to PARLOG
translator ' I , in K.J. Turner (editor) "Formal
Description Techniques", Elsevier Science
Publishers B. V. (North-Holland), 1989.
C. A. R. Hoare, "Communication Sequential
Processes", 1978.
Eiichi Horita, "Formulation of CCS with Typed
Lambda Calculus and Its Efficient Interpretation
Mechanism", 1988.
G. Karjoth, " Implementation process algebra
specifications by state machines", in " Protocol
specification, testing , and verification", VIII,
North-Holland, 1988.
L. Logrippo, et al., "An interpreter for LOTOS:
A specification language for distributed
systems", Software Practice and Experience, to
appear.
" LOTOS - A Formal Description Technique
Based on the Temporaf Ordering -of
Observational Behavior," ISO, DIS 8807, 1987
MBnas, "LIW An Implementation Wordben:!
for the Specification Language LOTOS ,
SEDOS/CS/WP/13/M, E.T.S.I., Telecomunica-
tion, Madrid, 1987.
J. A. Manas, T. de Miguel-More, " From
LOTOS to C", in K.J. Turner (editor) "Formal
Description Techniques", Elsevier Science
Publishers B. V. (North-Holland), 1989.
R. Milner, "A Calculus of Communicating
Systems", Secture Notes in CS, No. 92,
Springer Verlag, 1980.
A bdel 1 at i f 0 bai d , of
Implementation Choices for LOTOS
Descriptions", April, 1988.
Juan Quemada, Santiago Pavon, Angel
Fernandez, " Transforming LOTOS
specifications with LOAL: The Parameterized
Expansion ", in K.J. Turner (editor) "Formal
Description Techniques", Elsevier Science
Publishers B. V. (North-Holland), 1989.
K. Turner, " A LOTOS - based development
strategy ", FORTE'89, Vancouver, Dec 5-8
1989.
Cheng Wu, G.v. Bochmann, "An execution
model for LOTOS specifications",
PUBLICATION #701, Dept. I.R.O., Universite
de Montreal, Oct. 1989.
Cheng Wu, G.v. Bochmann, " Fairness in
LOTOS ", in preparation, 1990.

" S pec i f ic at ion

904.3.6
1895

